Textile Leadership

Reset
3 results
(c) MycoWorks. Photos by Guillem Cruells, Set Design by Adriano Escribano
28.07.2023

MycoWorks: Reishi™ Committed for Commercial-Scale Production

July 20, biomaterials technology company MycoWorks announced three Reishi™ products and is unveiling performance breakthroughs in this revolutionary material made from Fine Mycelium™.

Founded in 2013, MycoWorks is marking its tenth anniversary this year with the launches of Reishi Doux, Reishi Natural, and Reishi Pebble. Each exceeds performance levels required by the luxury industry and behave similarly to that of some animal leathers. These will soon be produced at the world’s first commercial-scale Fine Mycelium factory in Union, South Carolina.

July 20, biomaterials technology company MycoWorks announced three Reishi™ products and is unveiling performance breakthroughs in this revolutionary material made from Fine Mycelium™.

Founded in 2013, MycoWorks is marking its tenth anniversary this year with the launches of Reishi Doux, Reishi Natural, and Reishi Pebble. Each exceeds performance levels required by the luxury industry and behave similarly to that of some animal leathers. These will soon be produced at the world’s first commercial-scale Fine Mycelium factory in Union, South Carolina.

Unparalleled Quality
“This is a breakthrough for the luxury industry,” said Thibault Schockert, CEO of luxury leather goods factory Cuir du Vaudreuil. “This improvement gives us the opportunity to introduce an entirely new category to our business,” referring to the latest Reishi™ material produced by MycoWorks that incorporates new breakthroughs in both Fine Mycelium fermentation and in mycelium tanning.
 
These milestones are the culmination of three decades of pioneering mycelium materials, beginning in the 1990s with the world’s first demonstrations of mycelium’s structural capabilities by MycoWorks co-founder Phil Ross. Prototypes of MycoWorks’ Fine Mycelium™ leather-like material were first unveiled in 2016, featuring both durability and softness but relatively low tensile strength. After achieving luxury-level performance over years of improvements, recent breakthroughs bring Reishi™ to yet another level of sensual and technical performance. Data on Reishi™ including softness, durability, flexibility, finish adhesion, tear strength, abrasion resistance, homogeneity and more are shown below, with additional data available upon request.
 
“Heritage-level quality can only be achieved with long-term dedication to discovery, paired with a commitment to craft and the transmission of deep expertise,” observed MycoWorks board member and former CEO of Hermès, Patrick Thomas. “MycoWorks’ Fine Mycelium™ platform is built on these principles, bringing together artisanal mastery with a rigorous approach to material innovation in a scalable way.”

Fine Mycelium™ as a biomaterial, not merely an ingredient
“The strength of our unique Fine Mycelium™ platform is evidenced by the new levels of performance we have achieved in the first half of this year in partnership with our European tannery partners,” said Bill Morris, MycoWorks VP of Product Management, “and our current product has surprised and delighted our brand partners, who have witnessed its evolution. Our latest material not only has Fine Mycelium™’s signature natural feel, but adds to it new levels of technical performance.”

MycoWorks’ brand partners include Hermès, General Motors, Ligne Roset, Heron Preston, Nick Fouquet, and others yet to be announced.

With these new Reishi™ articles, MycoWorks and its brand partners are excited to enter commercialization cycles—with some, such as Nick Fouquet and others, new styles and products Made With Reishi™.

MycoWorks’ Fine Mycelium™ platform is powerful in its tunability, and as a true, grown biomaterial sheet—rather than an added mycelium ingredient as found in other “mushroom leather”. MycoWorks’ process is unique in its ability to endlessly enable improvement. The recent quality advances were achieved by utilizing a combination of enhanced growth conditions plus a fundamentally new, patent-pending tanning approach that MycoWorks developed in-house. Because of the uniqueness of the Fine Mycelium process, every advance marks a  differentiator between MycoWorks’ technology platform and that of other biomaterial companies.

“While most plant- or mycelium-based alternative materials use plastic to meet baseline performance standards, MycoWorks has spent ten years taking no shortcuts, in order to achieve the biotech innovations behind our proprietary process,” says Matt Scullin, MycoWorks CEO. “Operating vertically—owning our entire technology stack, rather than licensing and outsourcing—has given us the depth of expertise required to bring a new material to market.”

Meeting luxury’s standards for material performance without the use of plastics means Fine Mycelium™ stands out in a field of alternatives that depend on polyurethane (PU) or polyvinyl chloride (PVC) films, fillers, or backings to provide strength and durability.

Source:

MycoWorks

Illustration: Chalmers University of Technology | David Ljungberg
28.03.2023

New wood-based technology removes 80 % of dye pollutants in wastewater

Researchers at Chalmers University of Technology, Sweden, have developed a new method that can easily purify contaminated water using a cellulose-based material. This discovery could have implications for countries with poor water treatment technologies and combat the widespread problem of toxic dye discharge from the textile industry.

Clean water is a prerequisite for our health and living environment, but far from a given for everyone. According to the World Health Organization, WHO, there are currently over two billion people living with limited or no access to clean water.

This global challenge is at the centre of a research group at Chalmers University of Technology, which has developed a method to easily remove pollutants from water. The group, led by Gunnar Westman, Associate Professor of Organic Chemistry focuses on new uses for cellulose and wood-based products and is part of the Wallenberg Wood Science Center.

Researchers at Chalmers University of Technology, Sweden, have developed a new method that can easily purify contaminated water using a cellulose-based material. This discovery could have implications for countries with poor water treatment technologies and combat the widespread problem of toxic dye discharge from the textile industry.

Clean water is a prerequisite for our health and living environment, but far from a given for everyone. According to the World Health Organization, WHO, there are currently over two billion people living with limited or no access to clean water.

This global challenge is at the centre of a research group at Chalmers University of Technology, which has developed a method to easily remove pollutants from water. The group, led by Gunnar Westman, Associate Professor of Organic Chemistry focuses on new uses for cellulose and wood-based products and is part of the Wallenberg Wood Science Center.

The researchers have built up solid knowledge about cellulose nanocrystals1  – and this is where the key to water purification lies. These tiny nanoparticles have an outstanding adsorption capacity, which the researchers have now found a way to utilise.

“We have taken a unique holistic approach to these cellulose nanocrystals, examining their properties and potential applications. We have now created a biobased material, a form of cellulose powder with excellent purification properties that we can adapt and modify depending on the types of pollutants to be removed,” says Gunnar Westman.

Absorbs and breaks down toxins
In a study recently published in the scientific journal Industrial & Engineering Chemistry Research, the researchers show how toxic dyes can be filtered out of wastewater using the method and material developed by the group. The research was conducted in collaboration with the Malaviya National Institute of Technology Jaipur in India, where dye pollutants in textile industry wastewater are a widespread problem.

The treatment requires neither pressure nor heat, and uses sunlight to catalyse the process. Gunnar Westman likens the method to pouring raspberry juice into a glass with grains of rice, which soak up the juice to make the water transparent again.
 
“Imagine a simple purification system, like a portable box connected to the sewage pipe. As the contaminated water passes through the cellulose powder filter, the pollutants are absorbed and the sunlight entering the treatment system causes them to break down quickly and efficiently. It is a cost-effective and simple system to set up and use, and we see that it could be of great benefit in countries that currently have poor or non-existent water treatment,” he says.

The method will be tested in India
India is one of the developing countries in Asia with extensive textile production, where large amounts of dyes are released into lakes, rivers and streams every year. The consequences for humans and the environment are serious. Water contaminant contains dyes and heavy metals and can cause skin damage with direct contact and increase the risk of cancer and organ damage when they enter into the food chain. Additionally, nature is affected in several ways, including the impairment of photosynthesis and plant growth.

Conducting field studies in India is an important next step, and the Chalmers researchers are now supporting their Indian colleagues in their efforts to get some of the country's small-scale industries to test the method in reality. So far, laboratory tests with industrial water have shown that more than 80 percent of the dye pollutants are removed with the new method, and Gunnar Westman sees good opportunities to further increase the degree of purification.

“Going from discharging completely untreated water to removing 80 percent of the pollutants is a huge improvement, and means significantly less destruction of nature and harm to humans. In addition, by optimising the pH and treatment time, we see an opportunity to further improve the process so that we can produce both irrigation and drinking water. It would be fantastic if we can help these industries to get a water treatment system that works, so that people in the surrounding area can use the water without risking their health,” he says.

Can be used against other types of pollutants
Gunnar Westman also sees great opportunities to use cellulose nanocrystals for the treatment of other water pollutants than dyes. In a previous study, the research group has shown that pollutants of toxic hexavalent chromium, which is common in wastewater from mining, leather and metal industries, could be successfully removed with a similar type of cellulose-based material. The group is also exploring how the research area can contribute to the purification of antibiotic residues.

“There is great potential to find good water purification opportunities with this material, and in addition to the basic knowledge we have built up at Chalmers, an important key to success is the collective expertise available at the Wallenberg Wood Science Center,” he says.

Read the full article in Industrial & Engineering Chemistry Research: Cellulose nanocrystals derived from microcrystalline cellulose for selective removal of Janus Green Azo Dye. The authors of the article are Gunnar Westman and Amit Kumar Sonker of Chalmers University of Technology, and Ruchi Aggarwal, Anjali Kumari Garg, Deepika Saini, and Sumit Kumar Sonkar of Malaviya National Institute of Technology Jaipur in India. The research is funded by the Wallenberg Wood Science Center, WWSC and the Indian group research is funded by Science and Engineering Research Board under Department of Science and Technology (DST-SERB) Government of India.

1 Nanocrystals are nanoparticles in crystal form that are extremely small: a nanoparticle is between 1 and 100 nanometres in at least one dimension, i.e. along one axis. (one nanometre = one billionth of a metre).

Source:

Chalmers University of Technology in Gothenburg, Sweden

Foto: Pixabay
20.06.2022

Techtextil 2022: Innovation Awards for Automotive, Medicine & Apparel

After a Corona-related break of three years, the leading trade fairs Techtextil and Texprocess are once again presenting the renowned Innovation Awards. The award-winning new developments from areas such as New Products, Sustainability and Automation demonstrate: Textile innovations and technologies provide impulses for many branches of the industry and promise market and sales success far beyond their own sector. 13 winners from seven categories will be honored at a public awards ceremony at Techtextil and Texprocess on 21 June, 2022.
 

After a Corona-related break of three years, the leading trade fairs Techtextil and Texprocess are once again presenting the renowned Innovation Awards. The award-winning new developments from areas such as New Products, Sustainability and Automation demonstrate: Textile innovations and technologies provide impulses for many branches of the industry and promise market and sales success far beyond their own sector. 13 winners from seven categories will be honored at a public awards ceremony at Techtextil and Texprocess on 21 June, 2022.
 
As is the case for many other industries, times are challenging for the textile industry: the consequences of Corona, the Ukraine war, strained supply chains, sustainability issues, rising energy prices and recruitment problems - the industry is under pressure from many sides. But more than almost any other industry, it is also very adept at meeting these challenges with new ideas, developments and business models. This year's Innovation Awards at the leading trade fairs Techtextil and Texprocess are another example of this. With their new products, materials, solutions and processes, the 13 award winners are demonstrating in an exemplary manner that textile innovations are the ideal way to create market opportunities and boost future business revenues, out of the challenges of the present.

Techtextil Innovation Award and Texprocess Innovation Award
The Techtextil and Texprocess Innovation Awards will be presented on 21 June, 2022 in Hall 9.0. Textile innovations selected by international expert juries will be awarded prizes and presented publicly on the four days of the trade fair in Hall 9.1 (Techtextil) and 9.0 (Texprocess), in some cases for the first time.

World's first: first woven heart valve without postfabrication
In the "New Product" category, the Techtextil Innovation Award goes to the Institute of Textile Machinery and High Performance Material Technology (ITM) at the Technische Universität Dresden. Together with medical product manufacturers and heart surgeons from the Cardiovascular Center Würzburg and the Universitätsklinikum Würzburg, textile researchers from the ITM have succeeded in developing the world's first woven heart valve that does not require a single seam or other joining technique. "Our new development should also help children with heart valve defects in the future by growing with the heart of the young patients - avoiding repeated surgical interventions," says Dr.-Ing. Dilbar Aibibu, research group leader for biotextiles and medical textiles at ITM. Worldwide, cardiovascular diseases are among the most common causes of death; several million people die from them every year. When patients receive heart valve replacements, artificial mechanical or biobased solutions are usually used. If ITM has its way, the woven valve, which won the Techtextil Innovation Award, should become a beneficial alternative in the future.

Reuse of waste from a natural source
In the "New Material" category, RBX Créations (France) receives the Innovation Award for a novel cellulose fiber made from hemp waste. The material, named Iroony®, was developed with regard to the following question: Hemp is now grown either to make fiber or to produce hemp oil - but could not the two be combined? RBX Créations has now succeeded in developing a process for extracting cellulose from the waste of oilseed hemp. Spun into textile fibers, it can be used to produce sustainable textiles, packaging and other "green" products. The award is given to RBX Créations for its continuous and successful efforts to convert waste from a renewable source into a valuable cellulose fiber that meets the highest sustainability standards.

Fiber shielding technology for hospitals, electric cars and server farms
The Techtextil Innovation Award in the "New Technology" category goes to Aachen-based FibreCoat GmbH and Deutsche Basalt Faser GmbH from Sangerhausen (Saxony-Anhalt) for the joint development of an aluminum-coated basalt fiber. It combines the strength of basalt with the electrical conductivity of aluminum. According to FibreCoat, electromagnetic shielding as wallpaper in buildings in hospitals or server farms, among other places, should be up to 20 times cheaper than with conventional aluminum foil thanks to the new development. Another attractive and particularly fast-growing market is shielding solutions for electric cars. Robert Brüll, CEO of FibreCoat: "For a young company like ours, winning the Techtextil Innovation Award is an important milestone. We are honored to receive this prestigious award from the independent jury of experts. In particular, the confidence of our customers and visibility gained as a result are crucial for a start-up like FibreCoat on the road to market success."
 
More sustainable hygiene products such as diapers
Kelheim Fibres GmbH from Kelheim in Bavaria and the Saxon Textile Research Institute (STFI) in Chemnitz receive the Techtextil Innovation Award in the "New Concept" category for the development of novel, thermally bonded nonwovens based on cellulose for the production of reusable products with high absorbency. Consumers should no longer have to choose between high-performance or environmentally friendly products. Nature and performance of hygiene products go hand in hand thanks to the innovation of Kelheim, STFI and the Berlin-based start-up SUMO. Dr. Marina Crnoja-Cosic, Director New Business Development at Kelheim Fibres: "It is a great honor and pleasure for us to receive the Techtextil Innovation Award together with our partners. We see the award not only as a distinction for the project presented, but also as recognition of our innovation strategy. After all, in dialogue with partners we can react more quickly to current trends, develop in a more targeted manner and accelerate the commercialization of innovative solutions."

Waste from the automotive industry as a resource
Another Techtextil Innovation Award in the category "New Approaches on Sustainability & Circular Economy" honors a process that uses natural leather waste from the automotive industry to produce innovative textile coatings. It was developed by CITEVE, the Technology Center for Textile and Clothing in Portugal, and partners ERT Têxtil Portugal, CeNTI and CTIC (all Portugal). After CITEVE researchers discovered that cutting operations in the automotive industry generate a large amount of natural leather classified as waste, they sought a solution to reuse it. The expert jury recognizes the development as a successful industrial symbiosis: "Waste from one industrial sector is used here as a resource in another. The work of the CITEVE researchers thus supports an important trend toward a resource-efficient, environmentally friendly and sustainable textile industry."

Compostable textile coating
The Techtextil Innovation Award in the category "New Approaches on Sustainability & Circular Economy" goes to the textile research institute Centexbel (Belgium) for a bio-based and compostable dispersion for textile coatings and printing inks. The new development does not require solvents and brings a completely new type of polymer for coatings and printing inks to the market. According to the expert jury, the innovation is an important step for the textile coating industry towards more products based on renewable resources.

Fashion from pineapple peel
The Italian company Vérabuccia is honored in the "Performance Fashion Award" category for an innovative production process for the fashion and design sector. The patented process is designed to transform fruit waste into fashion highlights. A first material is the so-called "Ananasse". According to Vérabuccia, the special feature of this is that unlike other plant leathers, which tend to imitate real animal leather, it retains the original appearance of a pineapple skin; this emphasizes the origin of the raw material. With the Techtextil Innovation Award, the jury honored the unconventional thinking of the young Italian label, whose originality proves that innovative and appealing fashion can be developed from surprising materials.
 
100 percent compostable binder for nonwovens
In the "New Technology" category, the company OrganoClick (Sweden) receives the Techtextil Innovation Award for the development of a 100 percent bio-based binder for nonwovens applications that is made from waste components and is therefore said to be fully compostable. The innovation is designed to replace plastic-based binders. Because nonwovens are often made from non-degradable plastics, the Swedish company specializes in developing compostable material alternatives from wheat bran, fruit or crab shells, among others. This convinced the jury of the Techtextil Innovation Awards: "OrganoClick receives the award for its efforts to find bio-based raw material alternatives to replace oil-based materials."

Formaldehyde-free & bio-based coating system
The third award in the category "New Approaches on Sustainability & Circular Economy" goes to Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) from Baden-Württemberg and the company TotalEnergies - Cray Valley (France). Together, they have developed a novel, formaldehyde-free coating system. It is based on non-toxic hydroxymethylfurfural (HMF) derived from biomass waste. These HMF-based dip formulations are capable of replacing formaldehyde-based adhesion promoters on a one-to-one basis. For background: in tires, conveyor belts or V-belts, rubber materials are reinforced by cord. The quality of such cord composite systems with high-strength fibers such as polyester, aramid or polyamide and rubber is determined by the adhesion properties of the fibers to the matrix. In the established manufacturing process, adhesion promoters made of resorcinol-formaldehyde-latex (RFL) are used. However, formaldehyde has been classified by the EU as a proven carcinogen and mutagen since 2014. The jury therefore welcomes the health and environmentally friendly new development. It contributes to a more sustainable textile industry and the reduction of harmful chemicals.

Source:

Messe Frankfurt Exhibition GmbH